

Digital Third-Order Nonlinearity Correction for Time-Interleaved A/D Converters with VCOs

Takao Kihara, Keisuke Miyakoshi, Tsutomu Yoshimura

Osaka Institute of Technology, Japan

May 28, 2019

Outline

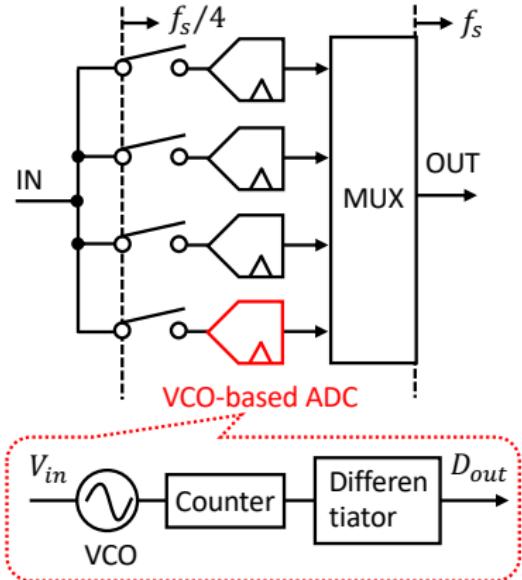
Background and Objectives

Time-interleaved A/D Converters (TI-ADCs) with
Voltage-Controlled Oscillators (VCOs)

Third-order Nonlinearity Correction

HD_3 and IM_3 Products in Bandpass ADC
Digital Correction Method and Architecture

Simulation


MATLAB/Simulink Model
Output Spectra and Constellation
Comparison

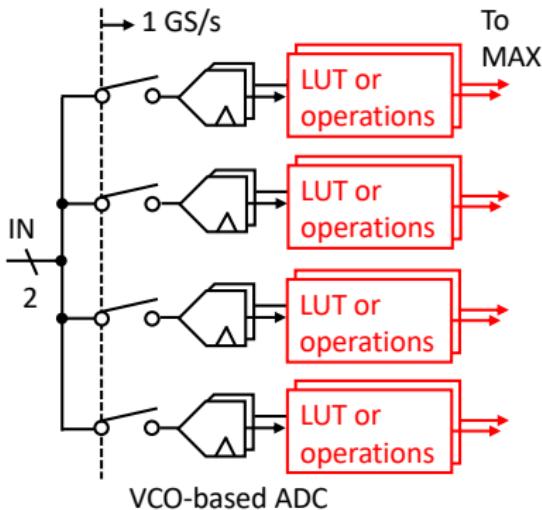
Summary

Background

TI-ADC with VCOs:

- ▶ Consists of multiple (M) VCO-based ADCs
- ▶ Reduces quantization noise around f_s/M (bandpass)
- ▶ Achieves 4 GS/s and 10 bit with 20 mW (VLSI '08 [5])
- ▶ Realizes direct-RF sampling receivers
- ▶ Has nonlinearity of K_{VCO} , third-order nonlinearity, causing HD_3 and IM_3 products

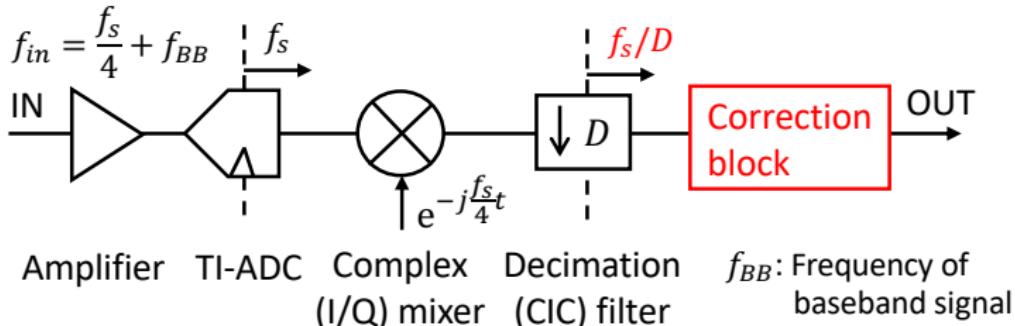
f_s : Sampling frequency, MUX: Multiplexer


VCO: Voltage-controlled oscillator, K_{VCO} : VCO gain, HD_3 : Third-order harmonic distortion, IM_3 : Third-order intermodulation

Digital Correction Methods for VCO-based ADCs

Conventional methods increase complexity and power consumption of TI-ADCs.

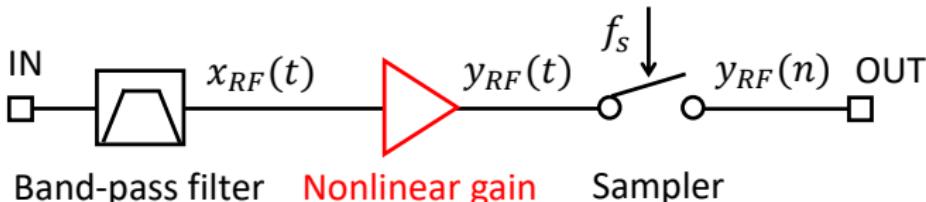
Linearizing K_{VCO} with lookup tables (LUTs):


- ▶ Needs to know K_{VCO} with external ramp signal [6], replica ADCs/VCOs [7,8], or dither [9]
- ▶ Uses eight 1 GS/s LUTs for 4 GS/s four-channel TI-ADC (differential)

Canceling harmonics with auxiliary ADC [10]:

- ▶ Requires 1 GS/s logical operations (multipliers and adders) in eight paths for TI-ADC.

Objectives



Digital correction method for third-order nonlinearity of TI-ADCs in direct-RF sampling receivers:

- ▶ Deals with input signals at $f_s/4$, whose HD_3 appears around $f_s/4$
- ▶ Detects HD_3 tone for continuous wave (CW) signal to estimate third-order nonlinearity of TI-ADC
- ▶ Cancels HD_3 and IM_3 products for modulated signals
- ▶ Needs no LUTs, auxiliary ADCs/VCOs, and GS/s operations

Expressions of HD_3 and IM_3 Products

Model of Nonlinear Bandpass ADC

Nonlinear gain:

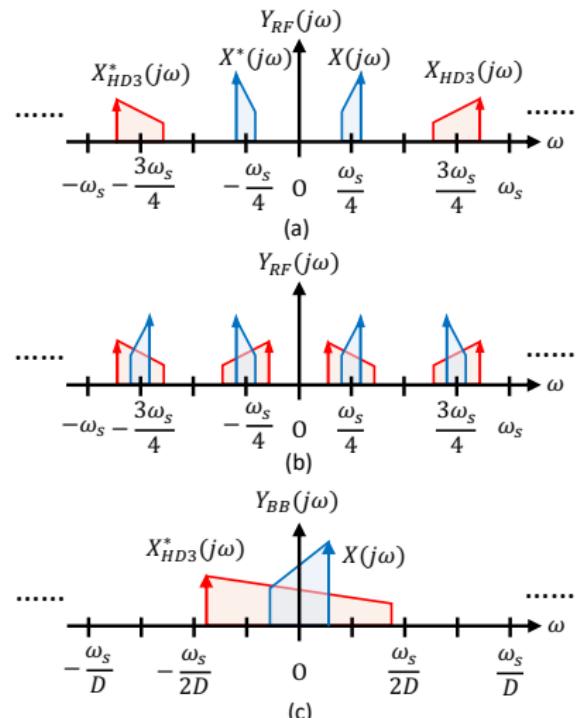
- ▶ Represents nonlinearity of ADC
- ▶ Deals with $x_{RF}(t) = 2 \operatorname{Re}[x(t)e^{j\omega_c t}] = x(t)e^{j\omega_c t} + x^*(t)e^{-j\omega_c t}$
 - ▶ $x(t)$: Equivalent baseband signal, ω_c : Carrier frequency
- ▶ Outputs $y_{RF}(t) = a_1 x_{RF}(t) + a_2 x_{RF}^2(t) + a_3 x_{RF}^3(t)$
 - ▶ a_i : i th-order nonlinearity coefficient
 - ▶ HD_3 components: $a_3 \{x^3(t)e^{j3\omega_c t} + [x^*(t)]^3 e^{-j3\omega_c t}\}$
 - ▶ IM_3 products: $a_3 \{3x^2(t)x^*(t)e^{j\omega_c t} + 3x(t)[x^*(t)]^2 e^{-j\omega_c t}\}$

If we estimate a_3 exactly, we can generate the same HD_3 and IM_3 .

Spectra of Desired and HD_3 Components

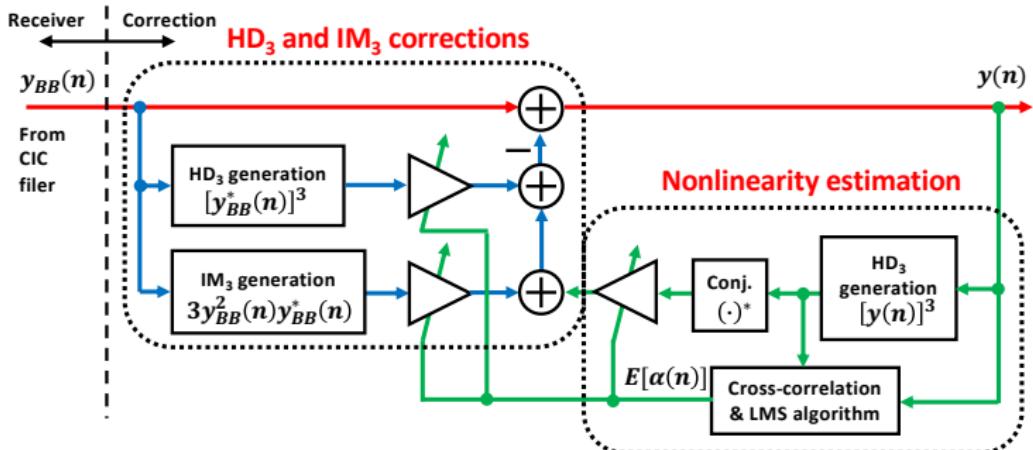
Spectra of modulated signal at output of:

(a) Nonlinear gain block


- ▶ $X(j\omega)$: Fourier transform (FT) of $x(t)$
- ▶ $X_{HD3}(j\omega)$: FT of $x^3(t)$

(b) Sampler

- ▶ (a) sampled at ω_s ($= 2\pi f_s$)


(c) Receiver

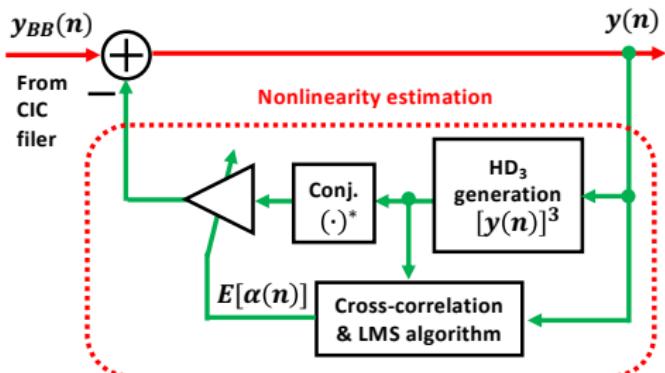
- ▶ (b) at $\omega_s/4$ downconverted and decimated
- ▶ $X(j\omega)$ and $X_{HD3}^*(j\omega)$ overlap, but not for CW signal

We detect HD_3 component for CW signal to estimate a_3 .

Proposed Correction Architecture

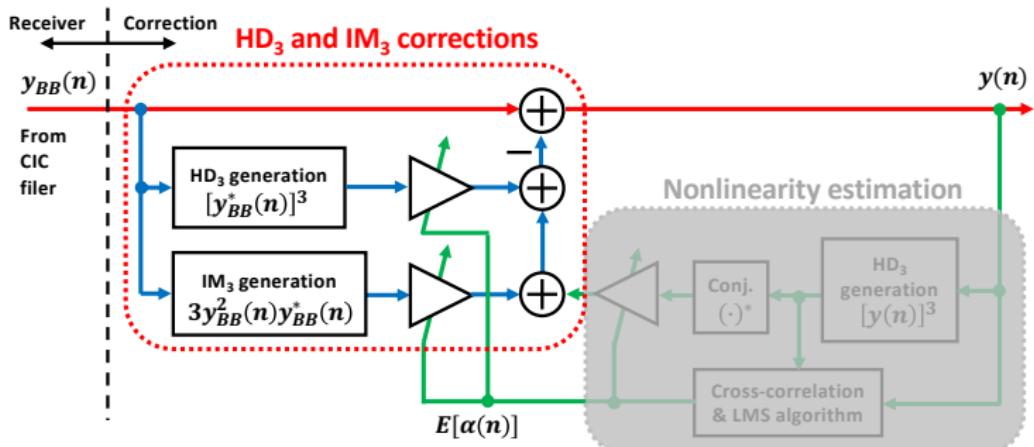
Proposed correction architecture:

- Consists of HD₃/IM₃ corrections and nonlinearity estimation
- Estimates a_3 by using CCF and LMS algorithm for CW signal around $f_s/4$, generated by transmitter (calibration mode)
- Generates HD₃ and IM₃ products for modulated signals and subtracts them from $y_{BB}(n)$ (operation mode).


CCF: Cross-correlation function, LMS: Least mean square

Estimation of a_3 (Calibration Mode)

Nonlinearity estimation block:


- ▶ Removes HD_3 , $[x^*(t)]^3$ ($= [x^3(t)]^*$), from $y_{BB}(n)$ by calculating

$$y(n) = y_{BB}(n) - \alpha(n-1) [y^*(n-1)]^3$$

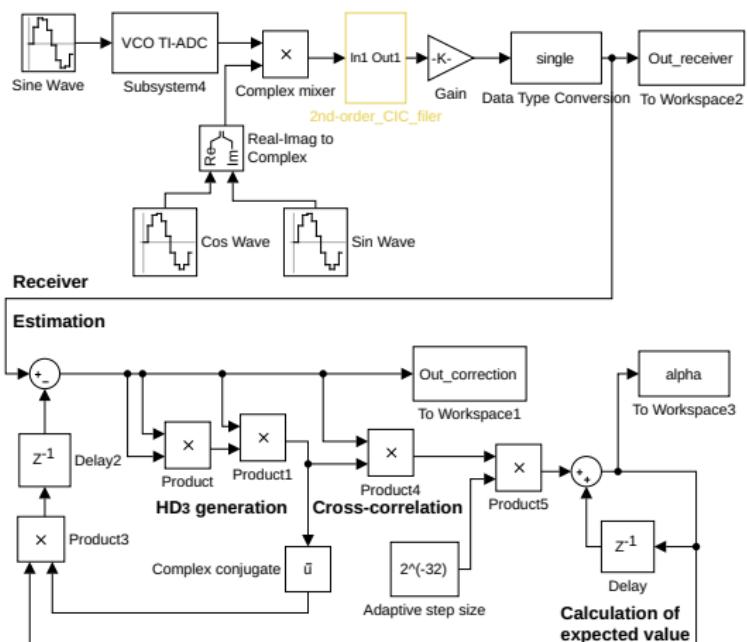
- ▶ Detects HD_3 with **CCF between $y(n)$ and $[y^*(n)]^3$** ,
$$r_{y(y^*)^3}(\tau) \stackrel{\text{def}}{=} E[y(n)([y^*(n-\tau)]^3)^*] = E[y(n)y^3(n-\tau)]$$
 - ▶ If $y(n)$ has no HD_3 component, $r_{y(y^*)^3}(\tau) = 0$.
- ▶ Obtains $E[\alpha(n)]$ with **LMS algorithm**:
$$\alpha(n+1) = \alpha(n) + \mu \cdot y(n)y^3(n), \mu: \text{Adaptive step size}$$

Removal of HD_3 and IM_3 Products (Operation Mode)

HD₃ and IM₃ correction blocks:

- ▶ Generate HD_3 ($[y_{BB}^*(t)]^3$) and IM_3 ($3y_{BB}^2(n)y_{BB}^*(n)$) products, multiplied by $E[\alpha]$ obtained in calibration mode
- ▶ Subtract them from $y_{BB}(n)$ to have

$$y(n) = y_{BB}(n) - E[\alpha] \left\{ [y_{BB}^*(n)]^3 + 3y_{BB}^2(n)y_{BB}^*(n) \right\}$$


MATLAB/Simulink Model (Calibration Mode)

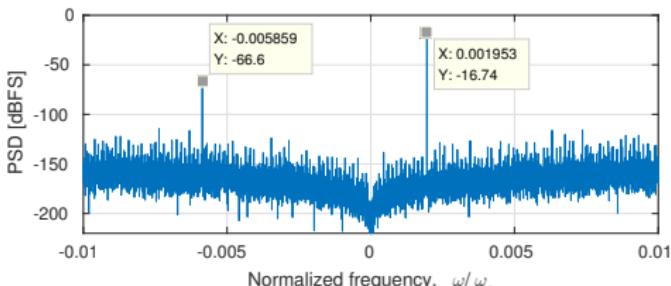
Receiver consists of:

- ▶ Four-channel TI-ADC with VCOs
- ▶ Complex mixer
- ▶ CIC filter

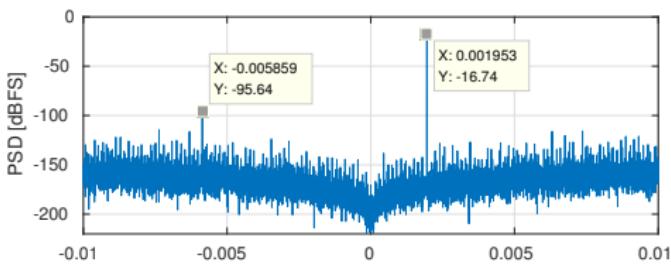
Estimation block consists of:

- ▶ HD_3 generation
- ▶ Cross-correlation
- ▶ Calculation of $E[\cdot]$

- ▶ HD_3 and IM_3 correction blocks designed (not shown)
- ▶ Calibration and operation modes simulated on MATLAB


Simulation Conditions

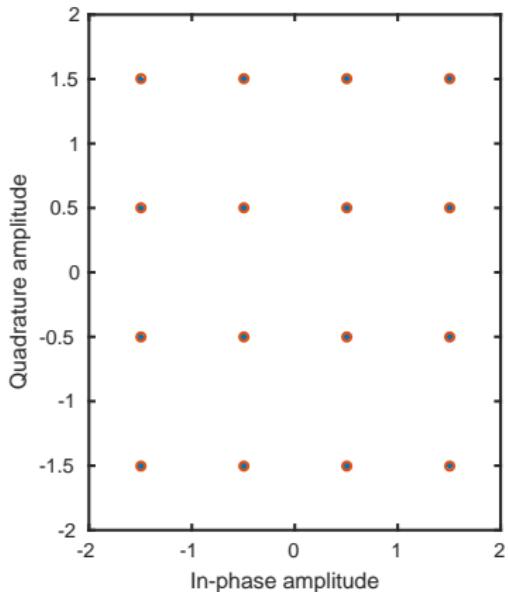
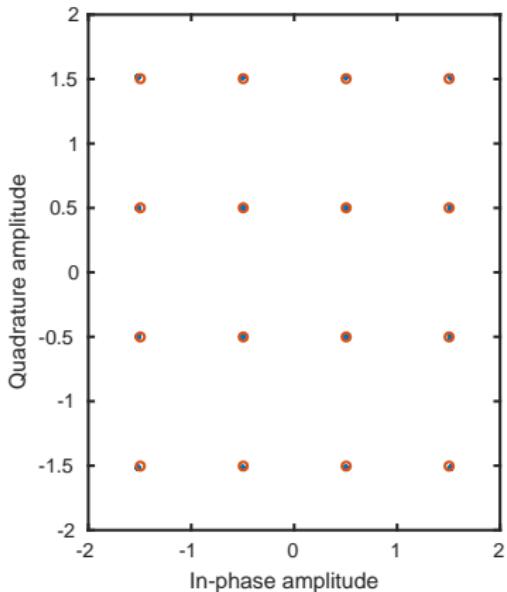
Block	Parameter	Variable	Value
TI-ADC with VCOs	Number of data	N	2^{24}
	Sampling frequency	f_s	1
	Number of channel	M	4
	Gain	a_1	2.57×10^{-2}
	2nd-order nonlinearity	a_2	6.60×10^{-3}
	3rd-order nonlinearity	a_3	7.04×10^{-4}
Decimation filter	Number of decimation	D	16
Correction	Adaptive step size	μ	2^{-32}
Input signal (CW)	Frequency	f_{in}	$1/4 + 1/2^{13}$
	Amplitude	A_{in}	0.69
Input signal (modulated)	Date rate	-	1/2000
	Modulation	-	16 QAM


- ▶ Nonlinearity coefficients, a_i ($i = 1, 2, 3$), obtained by dividing K_{VCO} of ring VCO (APMC '17 [14]) with 4 GHz.

Simulated Output Spectra of Receiver (Cal. Mode)

- ▶ CW signal input
- (a) FFT spectrum **without** estimation block
 - ▶ Desired signal: -16.7 dBFS
 - ▶ HD_3 tone: -66.6 dBFS
- (b) FFT spectrum **with** estimation block
 - ▶ HD_3 tone: -95.6 dBFS
 - ▶ $\alpha = 1.17 \times 10^{-4}$
 $-3.67 \times 10^{-5} j$

(a)

(b)

FFT: Fast Fourier transform

Estimation block operated successfully.

Simulated Constellation (Operation Mode)

- ▶ Left: w/o correction, Right: w/i correction for 16-QAM signal
- ▶ Outer blue symbols moved closer to ideal (red) symbols.

Correction improved EVM from 1.13% to 0.37%.

Comparison to Conv. Methods for VCO-based ADCs

	This work	TCAS-I '10	JSSC '13	JSSC '14	TCAS-I '15	JSSC '14
External signal	CW	Ramp	No	No	No	No
Nonlinearity estimation	Offline	Offline	Back-ground	B.G.	B.G.	B.G.
Operating freq.	f_s/D	f_s	f_s	f_s	f_s	f_s
LUT	No	Yes	Yes	Yes	Yes	No
Auxiliary ADC/VCO	No	No	Yes	Yes	No	Yes
Analog dither	No	No	No	No	Yes	No
TI-ADC	Yes	No	No	No	No	No

Proposed correction method:

- ▶ Uses CW signal, generated with transmitter in RF transceiver
- ▶ Executed in start-up calibration of RF transceiver
- ▶ Operates at lower clock rates (f_s/D)
- ▶ Requires no LUTs, auxiliary (replica) ADCs/VCOs, and dither

Summary

Digital correction method for third-order nonlinearity of TI-ADCs with VCOs in direct-RF sampling receivers:

- ▶ (Calibration mode for CW signal) Estimates nonlinearity with CCF and LMS algorithm of HD_3 tone.
- ▶ (Operation mode for modulated signals) Generates HD_3 and IM_3 products and subtracts them from receiver output
- ▶ Operates at lower clock rates (f_s/D)
- ▶ Requires no LUTs, auxiliary (replica) ADCs/VCOs, and dither
- ▶ Reduced HD_3 tone by 29 dB and improved EVM of 16-QAM signal by 0.7% on simulation

Proposed method can be applied to TI-ADCs with little additional area and power consumption.

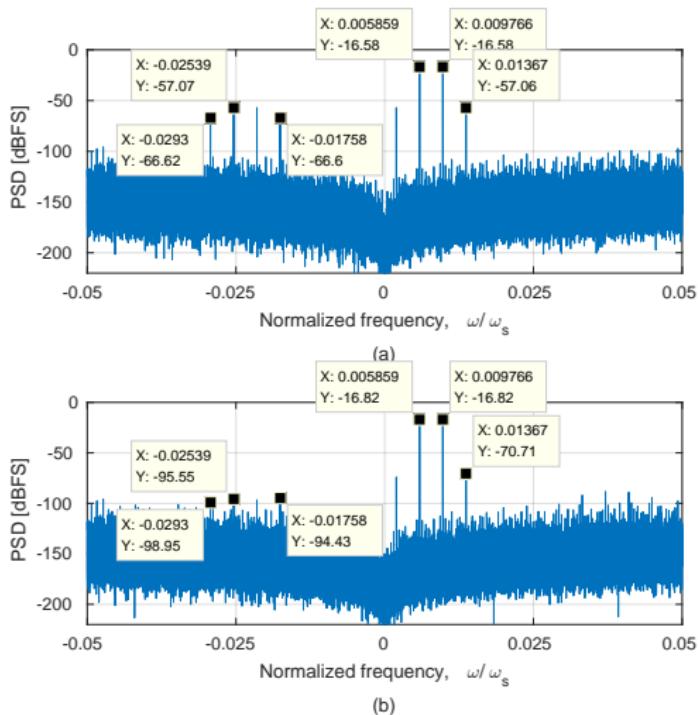
Acknowledgments

This work was supported by

- ▶ MIC/SCOPE #185107001
- ▶ JSPS KAKENHI Grant Number 16K16030 and 19K11890

Appendix: Simulated Spectra of Two Tones (Op. Mode)

- ▶ Two-tone signal input


(a) FFT spectrum w/o HD₃/IM₃ correction blocks

- ▶ Desired signals:
-16.6 dBFS
- ▶ IM₃ tone: -57.0 dBFS

(b) FFT spectrum w/i HD₃/IM₃ correction blocks

- ▶ IM₃ tone: -70.7 dBFS

FFT: Fast Fourier transform

HD₃ and IM₃ correction blocks operated successfully.