

Design of Cascaded Integrator-Comb Decimation Filters for Direct-RF Sampling Receivers

Takao Kihara, Hiroyuki Yano, Tsutomu Yoshimura

Osaka Institute of Technology, Japan

May 31, 2017

Outline

Background and Objectives

Filter Requirements of CIC Filter

Output SNR

Blocker Rejection

Analysis and Design of CIC Filter

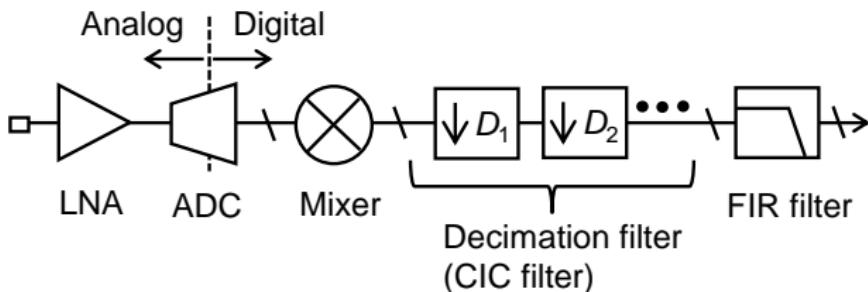
Folded Quantization Noise

Folded Out-of-Band Blocker

Design of CIC Filter

Simulations

MATLAB/Simulink Model

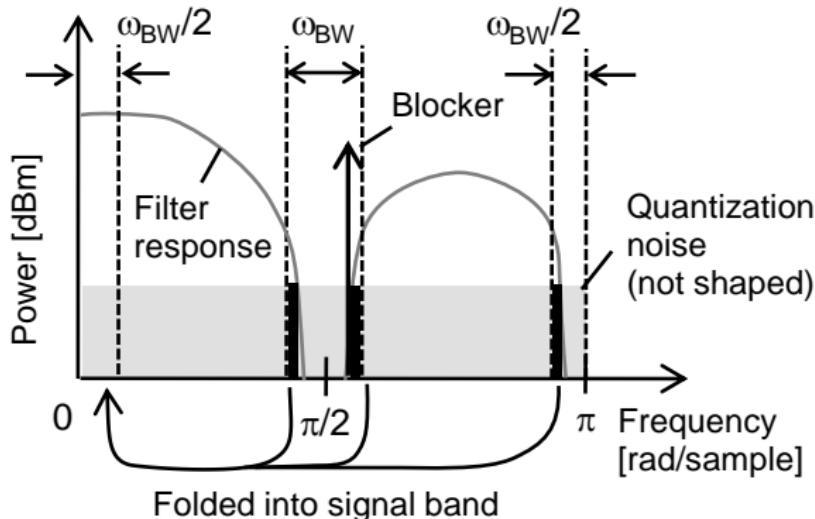

Input and Output Spectra of CIC Filter

Summary

Background

Direct-RF sampling receivers:

- ▶ Downconvert and filter RF signals in digital domain.
- ▶ Suitable for nano-scale digital CMOS process.
- ▶ Reduce the design cost and time to market.

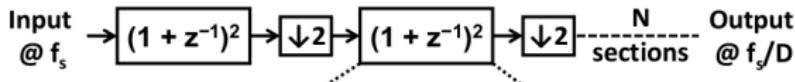

LNA: Low-noise amplifier, ADC: Analog-to-digital converter,
RFIC '10 [1], A-SSCC '11 [2], JSSC '12 [3]

Decimation filters:

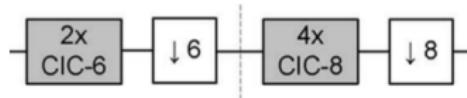
- ▶ Decrease GS/s rates of an ADC to MS/s rates.
- ▶ Consist of cascaded integrator-comb (CIC) filters.

Noise and Blockers Folded by Decimation

Quantization noise of the ADC and out-of-band blockers around the notch frequencies are folded into the signal band (ω_{BW}).



The CIC filter needs to reduce the folded noise and blockers to obtain the required output SNR (SNR_{out}).


Objectives

Generally, CIC filters with **some orders** are cascaded (multistage) to achieve the desired sampling rate and required noise level.

- ▶ A-SSCC '11 [2]: Two 2nd-order CIC filters ($D = 16$, D : total decimation factor).

- ▶ JSSC '12 [3]: **2nd-** and **4th-order** CIC filters ($D = 48$).

A higher order:

- ▶ Provides more attenuation for the folded noise and blockers.
- ▶ Increases the power consumption and area (TCAS-II '01 [4]).

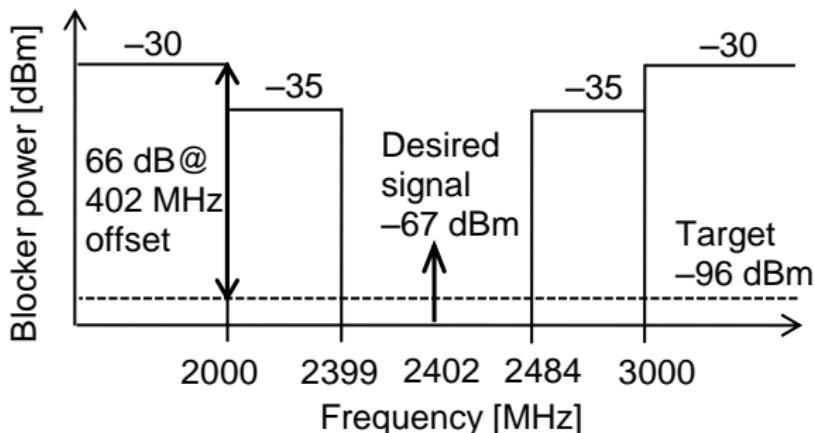
The order should be as small as possible for GS/s CIC filters.

We present a method to determine the lowest orders of CIC filters.

Required SNR_{out} of CIC Filter

- ▶ A RF-direct sampling receiver is assumed to comply with the Bluetooth Low Energy (BLE) specifications.

Block	Performance	Requirement
Receiver	Operating frequency, f_c	2400–2483.5 MHz
	Signal bandwidth, f_{BW}	~ 1.5 MHz
	Sensitivity	≤ -74 dBm
	Output SNR, SNR_{out}^*	≥ 14 dB
CIC filter	SNR_{out}^*	≥ 14 dB


* Input (desired) power, $P_{des,RX} = -74$ dBm

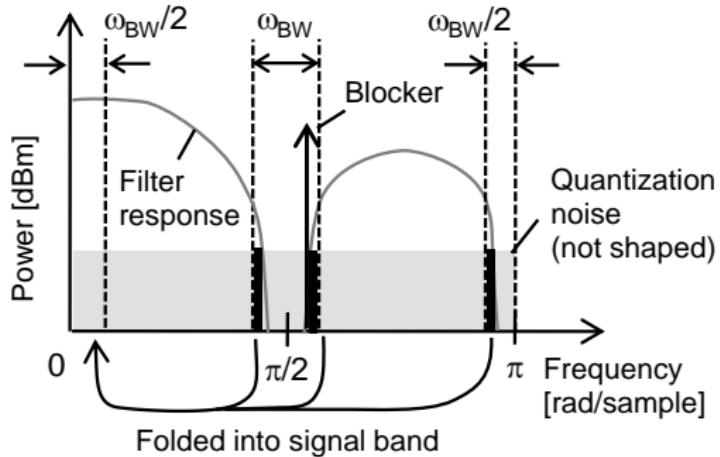
- ▶ SNR_{out} is mainly determined from the quantization noise of the ADC.

The CIC filter needs to reduce the folded quantization noise to obtain $SNR_{out} = 14$ dB for $P_{des,RX} = -74$ dBm.

Required Blocker Rejection of CIC Filter

Out-of-band blocking requirements for BLE

- ▶ The CIC filter needs to attenuate the blockers to -96 dBm ($= -67$ dBm $- 14$ dB $- 15$ dB (margin)).


Block	Performance	Requirement
CIC filter	Blocker rejection@ 3–401 MHz offset ≥ 402 MHz offset	61 dB 66 dB

Analysis of Folded Quantization Noise

Quantization noise is folded around the notch frequency,

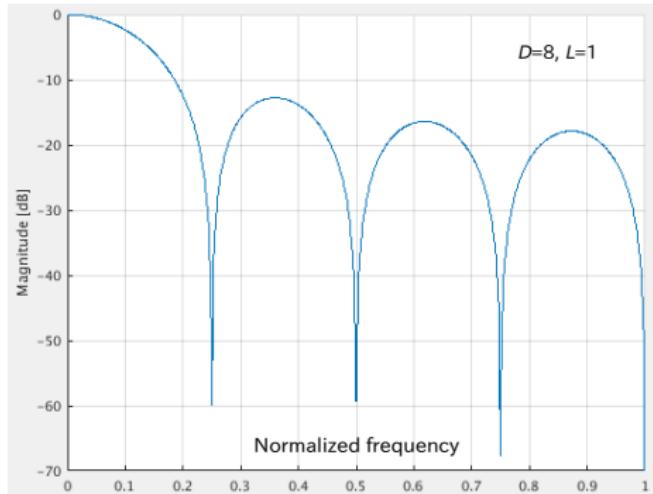
$$\omega_k = 2k\pi/D \quad (k = \pm 1, \dots, \pm D/2) \text{ for even } D.$$

- ▶ S_n : Power spectrum density of quantization noise
- ▶ $NTF(\omega)$: Noise transfer function of ADC
- ▶ $H_{CIC}(\omega)$: Transfer function of CIC filter

Noise power around ω_k ($P_{n,k}$) and total noise power folded into ω_{BW} (P_n):

$$P_{n,k} = \int_{\omega_k - \omega_{BW}/2}^{\omega_k + \omega_{BW}/2} |NTF(\omega)|^2 |H_{CIC}(\omega)|^2 S_n d\omega, \quad P_n = P_{n,0} + 2 \sum_{k=1}^{D/2} P_{n,k}.$$

Analysis of Folded Out-of-Band Blocker

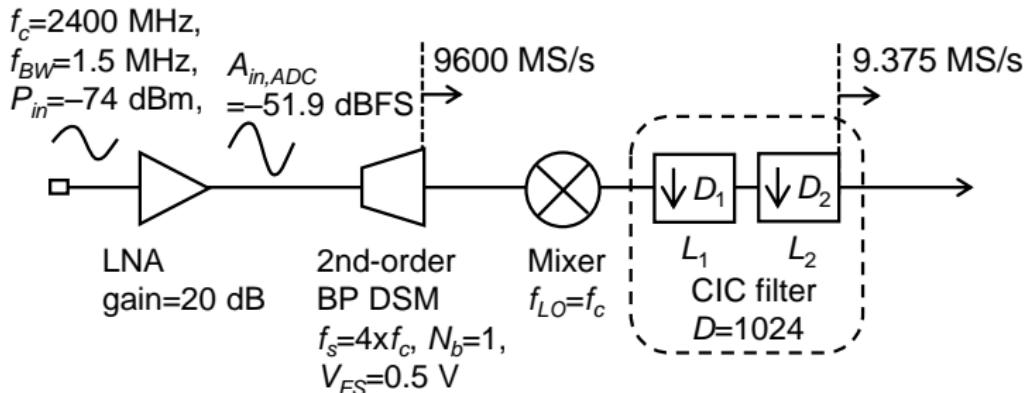

Worst-case scenario:

Blocker at $\omega_1 \pm \omega_{BW}$ for
 N -stage CIC filter

- ▶ Minimum rejection
- ▶ Rejection only from N th (last) stage, $|H_{N,CIC}|$

D_N : Decimation factor of
 N th stage

L_N : Order of N th stage



$$|H_{CIC}(\omega_1 \pm \omega_{BW}/2)| \approx |H_{N,CIC}(2\pi/D_N \pm D_1 \cdots D_{N-1}\omega_{BW}/2)|$$

$$= \frac{1}{D_N^{L_N}} \left| \frac{\sin \left(\pi \pm D \frac{\omega_{BW}}{4} \right)}{\sin \left(\frac{\pi}{D_N} \pm \frac{D}{D_N} \frac{\omega_{BW}}{4} \right)} \right|^{L_N} \approx \left(\frac{D\omega_{BW}}{4\pi} \right)^{L_N} = \left(\frac{Df_{BW}}{2f_s} \right)^{L_N}.$$

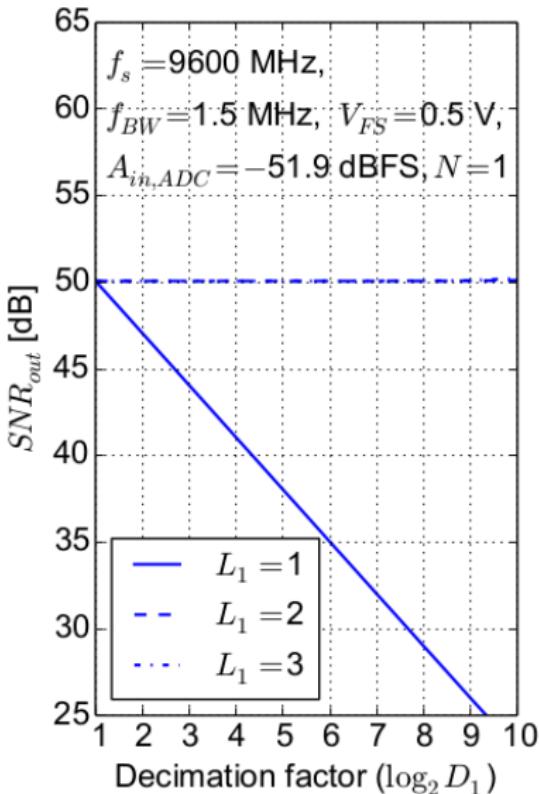
D and L_N almost determine the rejection for out-of-band blockers.

Design of Two-Stage CIC Filter

- ▶ 1-bit 2nd-order band-pass delta-sigma modulator (BP DSM)

Goal: To meet the following requirements with the lowest orders

Block	Performance	Requirement
CIC filter	SNR_{out}^*	≥ 14 dB
	Blocker rejection [†] @ 3–401 MHz offset ≥ 402 MHz offset	61 dB 66 dB

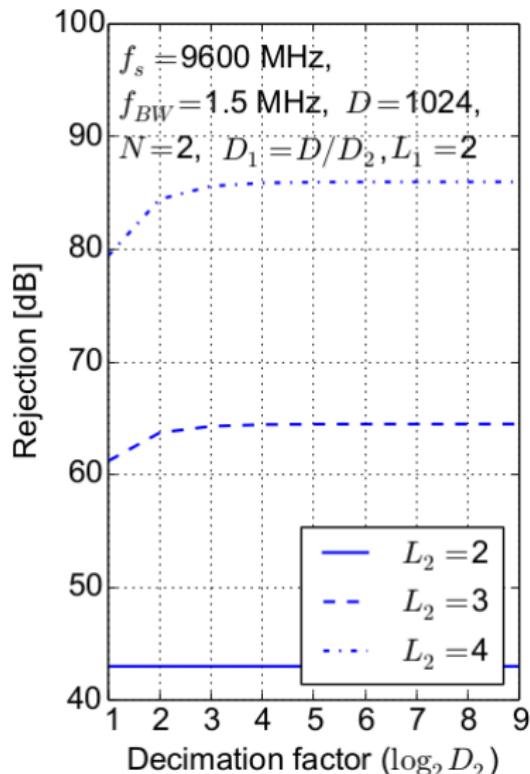

* $P_{des,RX} = -74$ dBm, [†] $P_{des,RX} = -67$ dBm.

L_i Determined by SNR_{out}

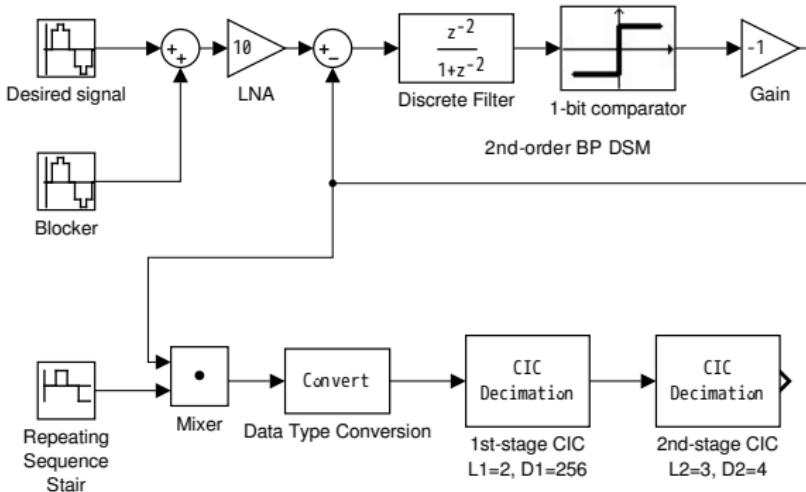
Determine a lower limit for L_i to achieve the required SNR_{out} for the minimum $P_{des,RX}$.

- ▶ One-stage CIC filter with L_1 and $D_1 = 1024$.
- ▶ Calculated SNR_{out} versus D_1 with L_1 as a parameter.
- ▶ For $L_1 = 1$, SNR_{out} degrades as D_1 increases.
- ▶ $L_1 \geq 2$ keep SNR_{out} constant for a larger D_1 .

$L_1 = 2$ is selected, because it has little impact on SNR_{out} .

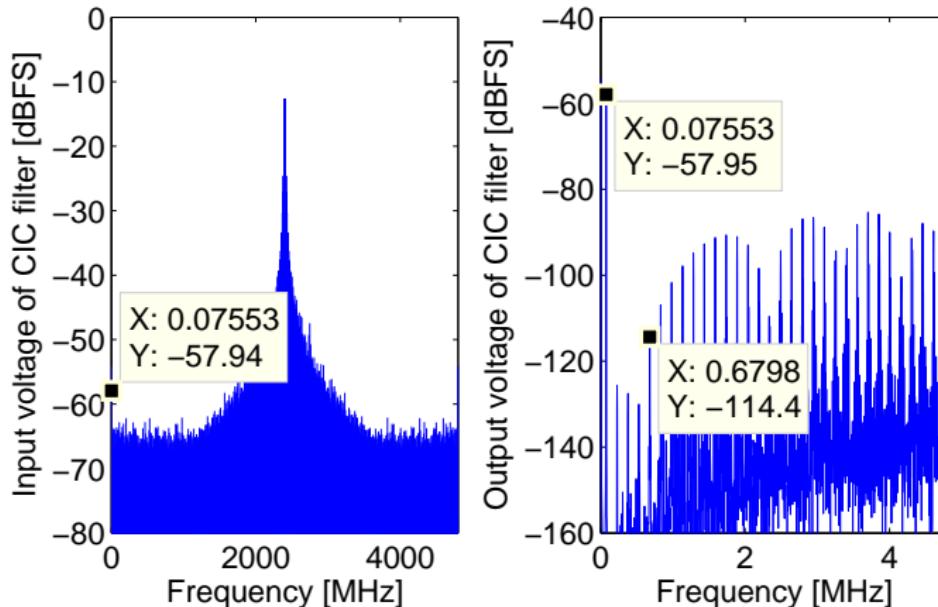


L_i Determined by Out-of-Band Rejection

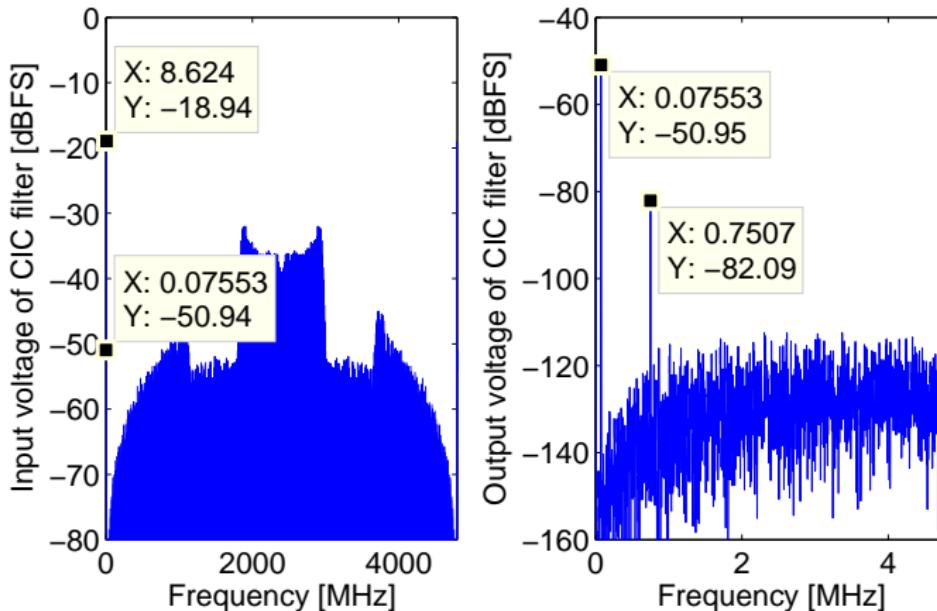

Determine L_i to achieve the required out-of-band rejection.

- ▶ Two-stage CIC filter with $L_1 = 2$, $D_1 = D/D_2$, and $D = 1024$.
- ▶ Calculated rejection versus D_2 with L_2 as a parameter.
- ▶ Rejection almost remains constant for $D_2 \geq 2^2 = 4$.
- ▶ $L_2 = 3$ and $D_2 = 4$ provide a rejection of 63 dB, satisfying the requirement.

$L_2 = 3$ and $D_2 = 4$ are selected, resulting in $D_1 = 256$.



MATLAB/Simulink Model


- ▶ Direct-RF sampling receiver designed on MATLAB/Simulink.
- ▶ CIC filters: 2nd-order stage with $D_1 = 256$ and 3rd-order one with $D_2 = 4$ ($D = 1024$).
- ▶ Desired frequency: $f_c + f_{BW}/(2 \cdot 10) = 2400.075$ MHz.

Simulated Spectra for Minimum Desired Power

- ▶ $P_{des,RX} = -74$ dBm without a blocker.
- ▶ Achieved SNR_{out} of 53.5 dB ($= -57.9$ dBFS $+ 114.4$ dBFS).

Simulated Spectra with Blocker

- ▶ $P_{des,RX} = -67$ dBm with -35-dBm blocker at 8.625-MHz offset (worst case).
- ▶ Achieved rejection of 63.1 dB ($= -18.94$ dBFS + 82.1 dBFS).

Summary

- ▶ Derived analytical expressions for SNR_{out} and out-of-band rejection of a multi-stage CIC filter.
- ▶ Presented a method to determine the lowest order of each CIC filter.
 - ▶ Enable a RF-direct sampling receiver to satisfy the SNR_{out} and out-of-band blocking requirements of BLE.
- ▶ Calculations agree well with simulations.

Performance	Required	Simulated	Calculated
SNR_{out}^*	> 14 dB	53.5 dB	50.0 dB
Blocker rejection [†] @ 8.625 MHz offset	61 dB	63.1 dB	63.7 dB
411.75 MHz offset	66 dB	110.4 dB	110.1 dB

^{*} $P_{des,RX} = -74$ dBm,

The presented method can reduce the power consumption and chip area of GS/s CIC filters.