

Analysis and Design of Differential LNAs with On-Chip Transformers in 65-nm CMOS Technology

Takao Kihara, Shigesato Matsuda, Tsutomu Yoshimura

Osaka Institute of Technology, Japan

June 27, 2016

Outline

Background

Analysis of Differential LNAs with On-Chip Transformer

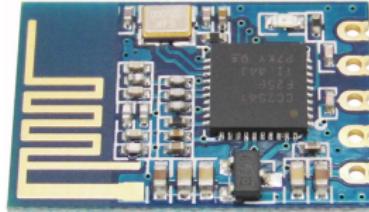
- Differential Common-Source (CS) LNA

- Differential Common-Gate (CG) LNA

- Design Considerations and Comparison

Simulation

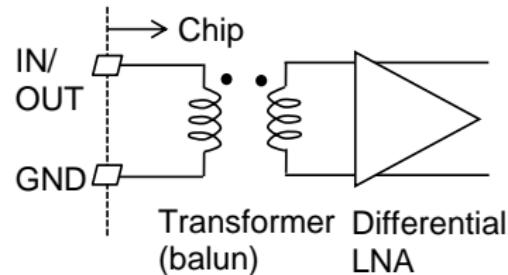
- Schematic


- Simulated Results

- Comparison

Summary

Background


- ▶ Wearable devices with Bluetooth Low Energy (BLE) have required small-size RF modules
- ▶ Single-ended input/ output RF transceivers reduce PCB area

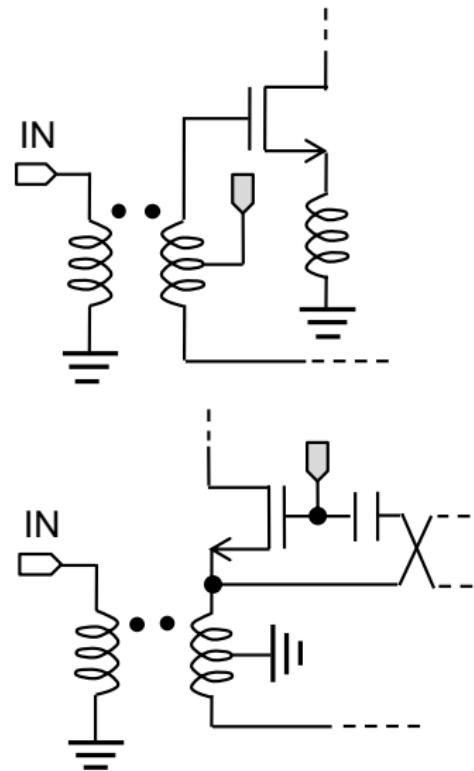
RF2541 BLE Module (NiceRF Wireless Technology)

Challenges: On-chip balun

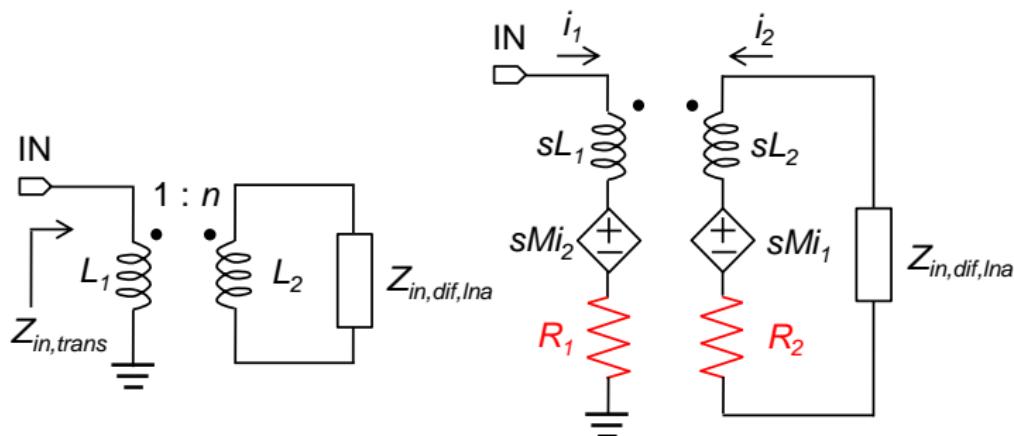
- ▶ LNAs often employ differential topologies
- ▶ On-chip transformer
 - ☺ provides single-to-differential conversion
 - ☹ greatly influences the LNA performances: input impedance, gain, and noise figure

Objectives

Analyze influences of transformer on


- ▶ Inductively-degenerated CS LNA (widely used)
- ▶ Cross-coupled CG LNA

Analytical expressions

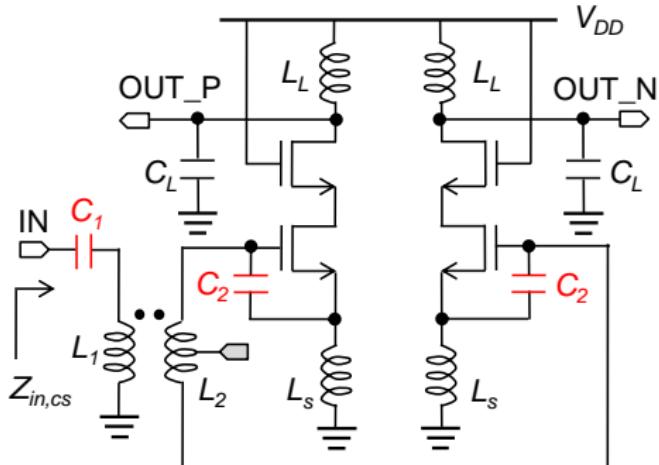

- ▶ Input impedance
- ▶ Current gain
- ▶ Noise figure

Design considerations

- ▶ Required Q and L of inductors in transformer
- ▶ Comparison of topologies

Input Impedance of Transformer Loaded with LNA

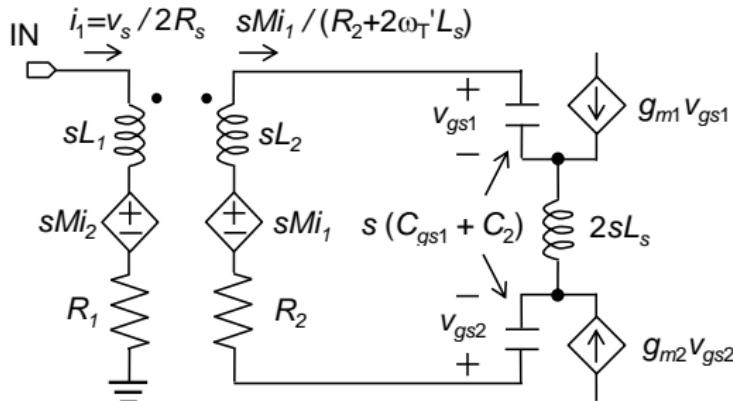
- ▶ Input impedance of differential LNA without transformer, $Z_{in,dif,lna}$
- ▶ Mutual inductance, M ($= nkL_1$), and coupling factor, k
- ▶ **Parasitic resistances ($R_i = \omega_0 L_i / Q_i$, $i = 1, 2$) included**


$$Z_{in,trans} = R_1 + j\omega L_1 - \frac{(j\omega nkL_1)^2}{R_2 + j\omega n^2 L_1 + Z_{in,dif,lna}}$$

Input Impedance of Differential CS LNA

- ▶ Additional capacitors (C_1, C_2) resonate with inductors (L_1, L_2 and L_s) at operating frequency, ω_0

$$Z_{in,cs} = R_1 + \frac{\omega_0^2 n^2 k^2 L_1^2}{R_2 + 2\omega'_T L_s},$$


$$\omega'_T = \frac{g_m}{C_{gs} + C_2}$$

- ▶ $2\omega'_T L_s$: Real part of input impedance of differential CS LNA **without** transformer, conventionally set to 50Ω .

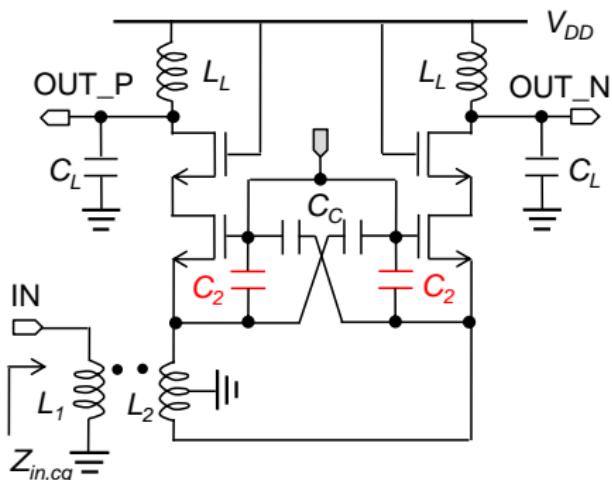
For a larger L_1 , we have to increase $2\omega'_T L_s$ accordingly to achieve input impedance matching.

Current Gain and NF of Differential CS LNA

Current gain and noise factor:

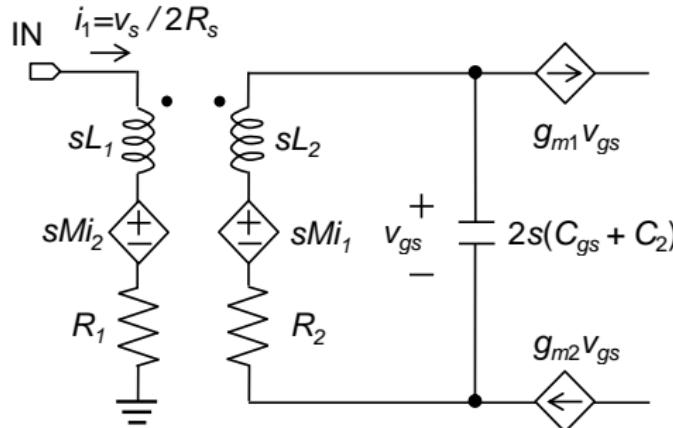
$$\alpha_{cs} = \left| \frac{g_m v_{gs1}}{v_s / 2R_s} \right| = \left| \frac{g_m \cdot sM}{s(C_{gs} + C_2)(R_2 + 2\omega'_T L_s)} \right| = \frac{\omega'_T n k L_1}{R_2 + 2\omega'_T L_s},$$

$$F_{cs} = 1 + F_{R_1} + F_{R_2} + F_{R_{Ls}} + \frac{\gamma}{2\alpha_{cs}^2} g_m R_s + \frac{2R_s}{\alpha_{cs}^2 R_{eq,LL}}$$


Current gain (α_{cs}) influences noise figure.

Input Impedance of Differential CG LNA

- ▶ Additional capacitors (C_2) resonate with inductors (L_1 and L_2) at ω_0
 - ▶ Equivalent resistance of LC tank (L_2 , C_2 and C_{gs}):


$$R_{eq,L_2} = Q_2^2 R_2$$
 - ▶ Input admittance of CG LNA **without** transformer:

$$g_m + 1/R_{eq,L_2}$$

$$Z_{in,cg} \approx R_1 + \frac{k^2}{n^2 \left(g_m + 1/R_{eq,L_2} \right)}, \quad \text{where } k^2 \approx 1.$$

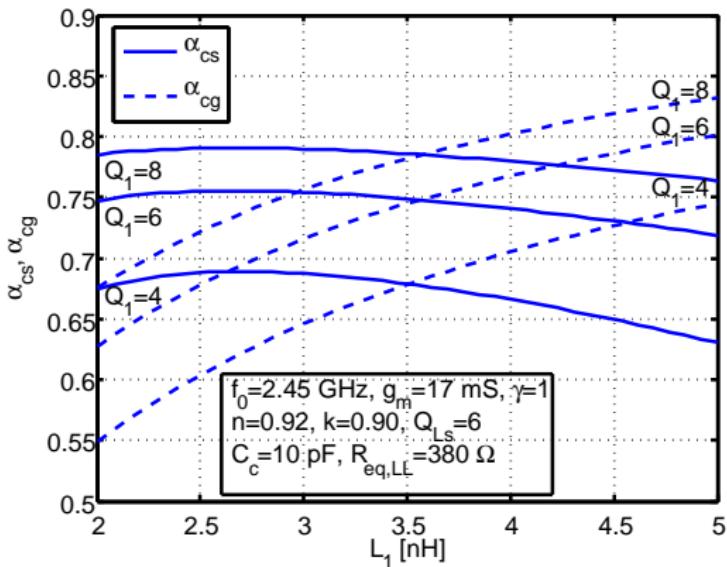
Current Gain and NF of Differential CG LNA

Current gain and noise factor:

$$\alpha_{cg} = \left| \frac{g_m v_{gs1}}{v_s / 2R_s} \right| = \left| \frac{\frac{sM}{R_2 + sL_2} \cdot g_m}{\frac{1}{R_2 + sL_2} + g_m + 2s(C_{gs} + C_2)} \right| \approx \frac{kg_m}{n(g_m + 1/R_{eq,L_2})},$$

$$F_{cg} = 1 + F_{R_1} + F_{R_2} + \frac{\gamma}{2\alpha_{cg}^2} g_m R_s + \frac{2R_s}{\alpha_{cg}^2 R_{eq,L_L}}.$$

Dependence of α on transformer design parameters (L and Q) provides us useful information


Calculated Current Gain (α_{cs} and α_{cg}) vs. L_1 and Q_1

- ▶ CS LNA

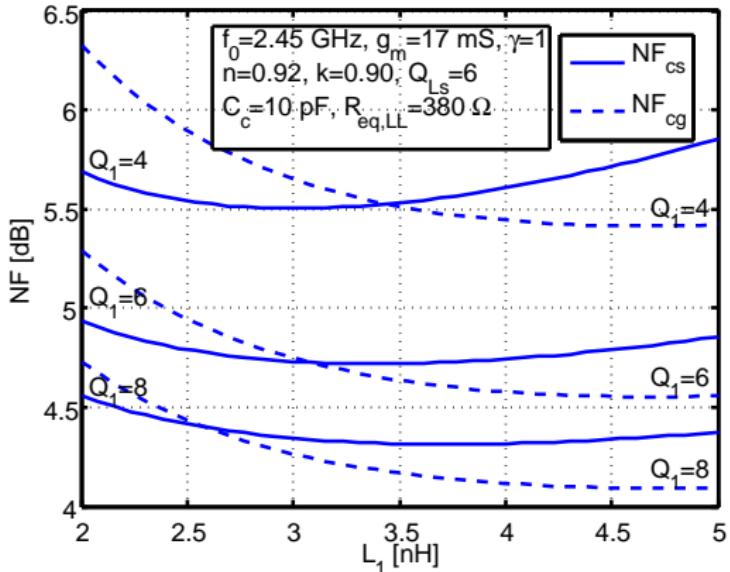
$$\alpha_{cs} = \frac{\omega'_T nk L_1}{R_2 + 2\omega'_T L_s}$$

- ▶ CG LNA

$$\alpha_{cg} = \frac{k g_m}{n(g_m + 1/R_{eq,L_2})}$$

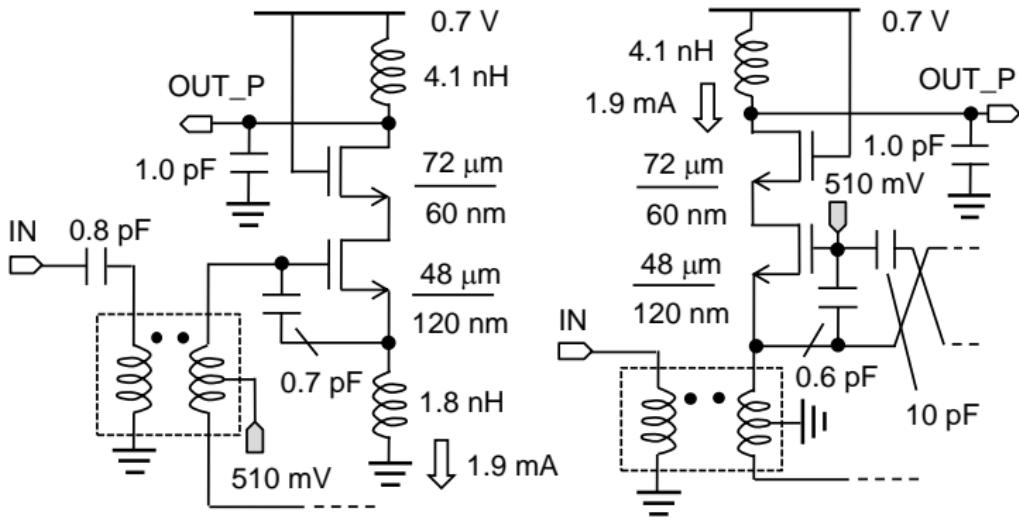
- ▶ Increasing Q_i results in higher current gains
- ▶ α_{cs} has the maximum value (around $L_1 = 2.6$ nH), while α_{cg} increases as L_1 increases
- ▶ CG LNA obtains a higher current gain for $L_1 > 3.5$ nH

Calculated NF vs. L_1 and Q_1


$$F_{cs} = 1 + F_{R_1} + F_{R_2} + F_{R_{Ls}} + \frac{\gamma}{2\alpha_{cs}^2} g_m R_s$$

$$+ \frac{2R_s}{\alpha_{cs}^2 R_{eq,LL}},$$

$$F_{cg} = 1 + F_{R_1} + F_{R_2}$$

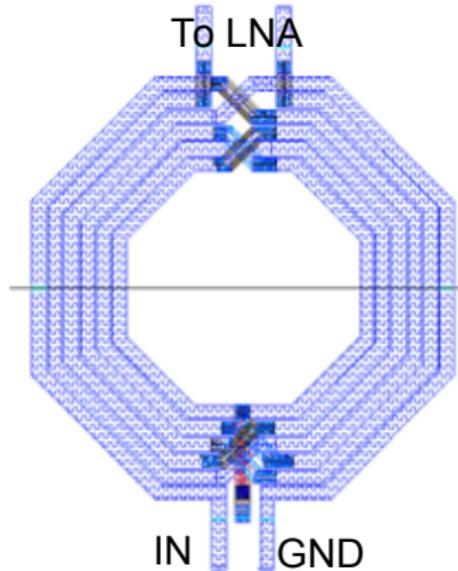

$$+ \frac{\gamma}{2\alpha_{cg}^2} g_m R_s$$

$$+ \frac{2R_s}{\alpha_{cg}^2 R_{eq,LL}}.$$

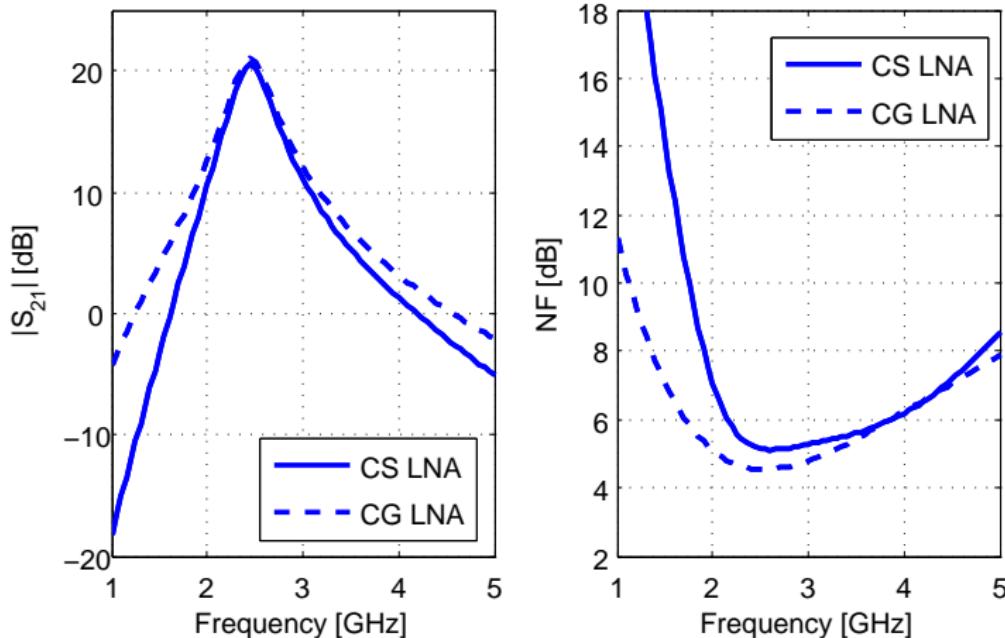
- Increasing Q_i results in lower NFs
- Transformer with $Q > 6$ provides $NF < 5$ dB
- CG LNA has a lower NF than CS LNA for $L_1 > 3.5$ nH

Schematics (Half) of Differential CS and CG LNAs

- ▶ Renesas Silicon-on-Thin-Buried Oxide (SOTB) **65-nm CMOS**
- ▶ Frequency=**2.45 GHz**; Current consumption=**3.8 mA@0.70 V**


Layout of Transformer

Structure


- ▶ Two inter-winding symmetric octagonal inductors
- ▶ Stacked with top three metal layers (1.7 μm in thickness)
- ▶ Outer diameter (d_{out}): 300 μm
- ▶ Metal width: 10 μm

Characteristics@2.45 GHz (Simulated with Momentum)

- ▶ $L_1 = 3.6 \text{ nH}$, $L_2 = 3.1 \text{ nH}$
- ▶ $Q_1 = 5.7$, $Q_2 = 5.4$
- ▶ $k = 0.91$

Simulated S_{21} and NF of CS and CG LNAs

- ▶ CG LNA achieved a slightly higher gain and a lower NF ($|S_{21}| = 20.9$ dB, $NF = 4.55$ dB) than CS LNA ($|S_{21}| = 20.4$ dB, $NF = 5.18$ dB)

Comparison between Simulations and Calculations

LNA	Transformer			Simulated*			Calculated†	
	d_{out} [μ m]	L_1 [nH]	Q_1 [-]	$ S_{11} $ [dB]	$ S_{21} $ [dB]	NF [dB]	$ S_{21} $ [dB]	NF [dB]
Spec.	-	-	-	< -10	>20	<5	>20	<5
CS	300	3.6	5.7	-27.2	20.4	5.18	21.0	4.80
	360	5.3	6.2	-25.8	20.7	5.53	20.8	4.78
CG	300	3.6	5.7	-18.8	20.9	4.55	21.0	4.68
	360	5.3	6.2	-25.9	21.0	4.42	21.6	4.57

* $f_0 = 2.45$ GHz, $V_{DD} = 0.7$ V, $I_{DD} = 3.8$ mA.

† $f_0 = 2.45$ GHz, $g_m = 17$ mS, $\gamma = 1$, $Q_{Ls} = Q_{LL} = 6$, $C_c = 10$ pF.

- ▶ Two transformers ($d_{out} = 300, 360$ μ m) are used
- ▶ Calculated NFs of CS LNAs are slightly lower than simulations, due to parasitic capacitances of transformer
- ▶ Calculations of CG LNAs agree with simulations, because these capacitances can be considered as C_{gs}

Summary

Derived analytical expressions for differential CS and CG LNAs with on-chip transformers:

- ▶ Calculations agree well with simulations, except for NF of CS LNA
- ▶ CG LNA (with $L > 3.5$ nH) achieves a higher gain and lower NF than CS LNA

Presented design considerations:

- ▶ Minimum requirements for Q and L of transformer:
 $Q > 6$ for $NF > 5$ dB and $L > 3.5$ nH for CG LNA

Significantly reduce the design efforts to differential LNAs with on-chip transformers.